Abstract

Given a set of moment restrictions (MRs) that overidentify a parameter θ, we investigate a semiparametric Bayesian approach for inference on θ that does not restrict the data distribution F apart from the MRs. As main contribution, we construct a degenerate Gaussian process prior that, conditionally on θ, restricts the F generated by this prior to satisfy the MRs with probability one. Our prior works even in the more involved case where the number of MRs is larger than the dimension of θ. We demonstrate that the corresponding posterior for θ is computationally convenient. Moreover, we show that there exists a link between our procedure, the generalized empirical likelihood with quadratic criterion and the limited information likelihood-based procedures. We provide a frequentist validation of our procedure by showing consistency and asymptotic normality of the posterior distribution of θ. The finite sample properties of our method are illustrated through Monte Carlo experiments and we provide an application to demand estimation in the airline market.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.