Abstract

This paper proposes a Gaussian process-based method for trajectory learning and generation of individualized gait motions at arbitrary user-designated walking speeds, intended to be used in generating reference motions for robotic gait rehabilitation systems. We utilize a nonlinear dimension reduction technique based on Gaussian process dynamical models (GPDMs), in which the internal dynamics is modeled as a second-order Markov process evolving in a lower-dimensional latent space. After the GPDM parameters are identified with training data obtained from gait motions of healthy subjects walking at different speeds, our method then employs Gaussian process regression (GPR) to predict the initial two states of the latent space dynamics from any arbitrary desired walking speed and the anthropometric parameters of the test subject. Motions are then generated by directly mapping the latent space dynamics to joint trajectories. Experimental studies involving more than 100 subjects indicate that our method generates gait patterns with 30% less mean square prediction errors compared to recent state-of-the-art methods, while also allowing for arbitrary user-specified walking speeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call