Abstract

In this paper, we investigate value and Greeks computation of a guaranteed minimum withdrawal benefit (GMWB) variable annuity, when both stochastic volatility and stochastic interest rate are considered together in the Heston–Hull–White model. In addition, as an insurance product, a guaranteed minimum death benefit is embedded in the contract. We consider a numerical method that solves the dynamic control problem due to the computing of the optimal withdrawal. Moreover, in order to speed up the computation, we employ Gaussian process regression (GPR), a machine learning technique that allows one to compute very fast approximations of a function from training data. In particular, starting from observed prices previously computed for some known combinations of model parameters, it is possible to approximate the whole value function on a defined domain. The regression algorithm consists of algorithm training and evaluation. The first step is the most time demanding, but it needs to be performed only once, while the latter is very fast and it requires to be performed only when predicting the target function. The developed method, as well as for the calculation of prices and Greeks, can also be employed to compute the no-arbitrage fee, which is a common practice in the variable annuities sector. Numerical experiments show that the accuracy of the values estimated by GPR is high with very low computational cost. Finally, we stress out that the analysis is carried out for a GMWB annuity, but it could be generalized to other insurance products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.