Abstract

This paper presents a hierarchical framework for detecting local and global anomalies via hierarchical feature representation and Gaussian process regression (GPR) which is fully non-parametric and robust to the noisy training data, and supports sparse features. While most research on anomaly detection has focused more on detecting local anomalies, we are more interested in global anomalies that involve multiple normal events interacting in an unusual manner, such as car accidents. To simultaneously detect local and global anomalies, we cast the extraction of normal interactions from the training videos as a problem of finding the frequent geometric relations of the nearby sparse spatio-temporal interest points (STIPs). A codebook of interaction templates is then constructed and modeled using the GPR, based on which a novel inference method for computing the likelihood of an observed interaction is also developed. Thereafter, these local likelihood scores are integrated into globally consistent anomaly masks, from which anomalies can be succinctly identified. To the best of our knowledge, it is the first time GPR is employed to model the relationship of the nearby STIPs for anomaly detection. Simulations based on four widespread datasets show that the new method outperforms the main state-of-the-art methods with lower computational burden.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.