Abstract
The displacement at various measurement points is a critical indicator that can intuitively reflect the operational properties of a dam. It is important to analyse displacement monitoring data in a timely manner and make reliable predictions of dam safety. This paper proposes a GPR-based model for dam displacement forecasting. The input variables of the monitoring model consider hydraulic factors, thermal factors and irreversible factors, and the output variables are the observed displacements of the dam. An example analysis based on the proposed method is performed on a prototype gravity dam, and the performance of different simple/combined covariance functions is investigated to obtain the optimal choice. Compared to multiple linear regression, radial basis function network (RBFN) and support vector machine (SVM) methods, the results indicate that the GPR-based model with a combined covariance function significantly improves the prediction accuracy. The proposed model can effectively overcome the over-learning and poor robustness issues of approaches such as RBFN and SVM. In addition, the GPR-based forecasting model has the advantages of simplicity in the training process and the capacity to provide a probabilistic output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.