Abstract
SUMMARYWe develop a theoretical framework for framing and solving probabilistic linear(ized) inverse problems in function spaces. This is built on the statistical theory of Gaussian Processes, and allows results to be obtained independent of any basis, avoiding any difficulties associated with the fidelity of representation that can be achieved. We show that the results of Backus–Gilbert theory can be fully understood within our framework, although there is not an exact equivalence due to fundamental differences of philosophy between the two approaches. Nevertheless, our work can be seen to unify several strands of linear inverse theory, and connects it to a large body of work in machine learning. We illustrate the application of our theory using a simple example, involving determination of Earth’s radial density structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.