Abstract
Gaussian process (GP) probabilistic models have attractive advantages over parametric and neural network modeling approaches. They have a small number of tuneable parameters, can be trained on relatively small training sets, and provide a measure of prediction certainty. In this paper, these properties are exploited to develop two methods of highlighting the presence of neonatal seizures from electroencephalograph (EEG) signals. In the first method, the certainty of the GP model prediction is used to indicate the presence of seizures. In the second approach, the hyperparameters of the GP model are used. Tests are carried out with a feature set of ten EEG measures developed from various signal processing techniques. Features are evaluated using a neural network classifier on 51 h of real neonatal EEG. The GP measures, in particular, the prediction certainty approach, produce a high level of performance compared to other modeling methods and methods currently in clinical use for EEG analysis, indicating that they are an important and useful tool for the real-time detection of neonatal seizures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.