Abstract
Metamodels as cheap approximation models for expensive to evaluate functions have been commonly used in simulation optimization problems. Among various types of metamodels, the Gaussian Process (GP) model is popular for both deterministic and stochastic simulation optimization problems. However, input uncertainty is usually ignored in simulation optimization problems, and thus current GP-based optimization algorithms do not incorporate input uncertainty. This article aims to refine the current GP-based optimization algorithms to solve the stochastic simulation optimization problems when input uncertainty is considered. The comprehensive numerical results indicate that our refined algorithms with input uncertainty can find optimal designs more efficiently than the existing algorithms when input uncertainty is present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.