Abstract

We propose an energy-efficient supervisory control method for the power management of parallel hybrid electric vehicles (HEVs) to improve the fuel economy and reduce exhaust gas emissions. Plug-in HEVs ((P)HEVs) have multiple power sources (e.g., an engine and motor) that should be cooperatively operated to meet the required instantaneous traction power for the desired vehicle speed while satisfying their physical limits. Because the efficiencies of the engine and motor vary with different operating speeds and torques, the main issue of energy-efficient power management is to allocate the power demand among the power sources by achieving maximum power conversion efficiencies and satisfy the operating limits. For an efficient power allocation, an optimal control problem is formulated, and a global solution is found through deterministic dynamic programming (DP). Owing to the curse of dimensionality and uncertainties in real driving, DP solutions are not directly applicable in real time. To resolve the limitations of DP, we employ a non-parametric Bayesian function approximation technique using a Gaussian process (GP). The offline DP solutions obtained from a set of real vehicle driving test data were used to learn a state-dependent probabilistic value function through Gaussian process regression. For online implementations, a receding horizon control scheme was applied for the feedback control of the power management. In comparison with the existing charge sustaining strategy and charge depleting and charge sustaining mixed controllers, we recorded fuel efficiency improvements of over 4.8% and 7.3%, respectively, in a mixed urban-suburban route.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.