Abstract

Scene classification aims to classify various objects and land use classes such as farms, highways, rivers, and airplanes in the remote sensing images. In recent times, the Convolutional Neural Network (CNN) based models have been widely applied in scene classification, due to their efficiency in feature representation. The CNN based models have the limitation of overfitting problems, due to the generation of more features in the convolutional layer and imbalanced data problems. This study proposed Gaussian Mutation–Spider Monkey Optimization (GM-SMO) model for feature selection to solve overfitting and imbalanced data problems in scene classification. The Gaussian mutation changes the position of the solution after exploration to increase the exploitation in feature selection. The GM-SMO model maintains better tradeoff between exploration and exploitation to select relevant features for superior classification. The GM-SMO model selects unique features to overcome overfitting and imbalanced data problems. In this manuscript, the Generative Adversarial Network (GAN) is used for generating the augmented images, and the AlexNet and Visual Geometry Group (VGG) 19 models are applied to extract the features from the augmented images. Then, the GM-SMO model selects unique features, which are given to the Long Short-Term Memory (LSTM) network for classification. In the resulting phase, the GM-SMO model achieves 99.46% of accuracy, where the existing transformer-CNN has achieved only 98.76% on the UCM dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call