Abstract

AbstractA method is presented for calculating the total electrostatic interaction energies between molecules from ab initio monomer wave functions. This approach differs from existing methods, such as Stone's distributed multipole analysis (DMA), in including the short‐range penetration energy as well as the long‐range multipolar energy. The monomer charge densities are expressed as distributed series of atom‐centered functions which we call Gaussian multipoles; these are analogous to the distributed point multipoles used in DMA. Our procedure has been encoded in the GMUL program. Calculations have been performed on the formamide/formaldehyde complex, a model system for NH …︁ O hydrogen bonding in biological molecules, and also on guanidinium/benzene, modeling amino/aromatic interactions in proteins. We find that the penetration energy can be significant, especially in its contribution to the variation of the electrostatic energy with interaction geometry. A hybrid method, which uses Gaussian multipoles for short‐range atom pair interactions and point multipoles for long‐range ones, allows the electrostatic energies, including penetration, to be calculated at a much reduced cost. We also note that the penetration energy may provide the best route to an atom–atom anisotropic model for the exchange‐repulsion energy in intermolecular potentials. © 1994 by John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.