Abstract
Persistence of objects in scenes is an important parameter of video object tracking systems. From the analysis of objects' durations (of stay) we not only get how long they stay in the scene, but also precisely where the objects spend time. The video frame is therefore segmented into clusters, and objects which go through or stay there are assigned to that cluster. If we observe all objects in a time period we should get a model of object behavior with respect to duration for each cluster. Using the built model we try to find abnormal object behavior. To build a model of object's spatial duration from the video data we utilize Gaussians and fast learning algorithm for real time surveillance applications on embedded systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.