Abstract

Probabilistic Decision-Based Neural Networks (PDBNNs) can be considered as a special form of Gaussian Mixture Models (GMMs) with trainable decision thresholds. This paper provides detailed illustrations to compare the recognition accuracy and decision boundaries of PDBNNs with that of GMMs through two pattern recognition tasks, namely the noisy XOR problem and the classification of two-dimensional vowel data. The paper highlights the strengths of PDBNNs by demonstrating that their thresholding mechanism is very effective in detecting data not belonging to any known classes. The original PDBNNs use elliptical basis functions with diagonal covariance matrices, which may be inappropriate for modelling feature vectors with correlated components. This paper overcomes this limitation by using full covariance matrices, and showing that the matrices are effective in characterising non-spherical clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.