Abstract

Any abnormal hypersynchronus activity of neurons can be characterized as an epileptic seizure (ES). A broad class of non-epileptic seizures is comprised of Psychogenic non-epileptic seizures (PNES). PNES are paroxysmal events, which mimics epileptic seizures and pose a diagnostic challenge with epileptic seizures due to their clinical similarities. The diagnosis of PNES is done using video-electroencephalography (VEM) monitoring. VEM being a resource intensive process calls for alternative methods for detection of PNES. There is now an emerging interest in the use of accelerometer based devices for the detection of seizures. In this work, we present an algorithm based on Gaussian mixture model (GMM's) for the identification of PNES, ES and normal movements using a wrist-worn accelerometer device. Features in time, frequency and wavelet domain are extracted from the norm of accelerometry signal. All events are then classified into three classes i.e normal, PNES and ES using a parametric estimate of the multivariate normal probability density function. An algorithm based on GMM's allows us to accurately model the non-epileptic and epileptic movements, thus enhancing the overall predictive accuracy of the system. The new algorithm was tested on data collected from 16 patients and showed an overall detection accuracy of 91% with 25 false alarms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call