Abstract

The unscented sequential Monte Carlo probability hypothesis density (USMC-PHD) filter has been proposed to improve the accuracy performance of the bootstrap SMC-PHD filter in cluttered environments. However, the USMC-PHD filter suffers from heavy computational complexity because the unscented information filter is assigned for every particle to approximate an importance sampling function. In this paper, we propose a Gaussian mixture form of the importance sampling function for the SMC-PHD filter to considerably reduce the computational complexity without performance degradation. Simulation results support that the proposed importance sampling function is effective in computational aspects compared with variants of SMC-PHD filters and competitive to the USMC-PHD filter in accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call