Abstract

This paper examines the Gaussian maximum likelihood estimator (GMLE) in the context of a general form of spatial autoregressive and moving average (ARMA) processes with finite second moment. The ARMA processes are supposed to be causal and invertible under the half-plane unilateral order, but not necessarily Gaussian. We show that the GMLE is consistent. Subject to a modification to confine the edge effect, it is also asymptotically distribution-free in the sense that the limit distribution is normal, unbiased and has variance depending only on the autocorrelation function. This is an analogue of Hannan's classic result for time series in the context of spatial processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.