Abstract
Consider the random sequential packing model with infinite input and in any dimension. When the input consists of non-zero volume convex solids we show that the total number of solids accepted over cubes of volume $\lambda$ is asymptotically normal as $\lambda \to \infty$. We provide a rate of approximation to the normal and show that the finite dimensional distributions of the packing measures converge to those of a mean zero generalized Gaussian field. The method of proof involves showing that the collection of accepted solids satisfies the weak spatial dependence condition known as stabilization.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.