Abstract
In this paper, we explore a method for posterior elimination for fast computation of the look-ahead Rao-Blackwellised Particle Filtering (Fast la-RBPF) algorithm for the simultaneous localization and mapping (SLAM) problem in the probabilistic robotics framework. In the case when a lot of SLAM states need to be estimated, large posterior states associated with the correct state may be outnumbered by multiple non-zero smaller posteriors. We show that by masking the low posterior weight states with a Gaussian kernel prior to weight selection the accuracy of the la-RBPF SLAM algorithm can be improved. Simulation results reveal that integrated with the proposed method the fast la-RBPF SLAM performance is enhanced over both the existing RBPF SLAM and the unmodified la-RBPF SLAM algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.