Abstract
The capacity of the two-user Gaussian interference channel has been open for 30 years. The understanding on this problem has been limited. The best known achievable region is due to Han and Kobayashi but its characterization is very complicated. It is also not known how tight the existing outer bounds are. In this work, we show that the existing outer bounds can in fact be arbitrarily loose in some parameter ranges, and by deriving new outer bounds, we show that a very simple and explicit Han-Kobayashi type scheme can achieve to within a single bit per second per hertz (bit/s/Hz) of the capacity for all values of the channel parameters. We also show that the scheme is asymptotically optimal at certain high signal-to-noise ratio (SNR) regimes. Using our results, we provide a natural generalization of the point-to-point classical notion of degrees of freedom to interference-limited scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.