Abstract

A Gaussian integer is a complex number whose real and imaginary parts are both integers. Meanwhile, a sequence is defined as perfect if and only if the out-of-phase value of the periodic autocorrelation function is equal to zero. This paper presents two novel classes of perfect sequences constructed using two groups of base sequences. The nonzero elements of these base sequences belong to the set {±1, ±j}. A perfect sequence can be obtained by linearly combining these base sequences or their cyclic shift equivalents with arbitrary nonzero complex coefficients of equal magnitudes. In general, the elements of the constructed sequences are not Gaussian integers. However, if the complex coefficients are Gaussian integers, then the resulting perfect sequences will be Gaussian integer perfect sequences (GIPSs). In addition, a periodic cross-correlation function is derived, which has the same mathematical expression as the investigated sequences. Finally, the maximal energy efficiency of the proposed GIPSs is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.