Abstract
Data-driven control of nonlinear systems with rigorous guarantees is a challenging problem as it usually calls for nonconvex optimization and often requires the knowledge of the true basis functions of the unknown system dynamics. To tackle these drawbacks, this work is based on a data-driven polynomial representation of general nonlinear systems exploiting Taylor polynomials. Thereby, we design state-feedback laws that render a known equilibrium globally asymptotically stable while operating with respect to a desired quadratic performance criterion. The calculation of the polynomial state feedback boils down to a sum-of-squares optimization problem, and hence to computationally tractable linear matrix inequalities. Moreover, we examine state-input data in presence of Gaussian noise by Bayesian inference to overcome the conservatism of deterministic noise characterizations from recent data-driven control approaches for Gaussian noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.