Abstract
Gaussian state decoherence aspects due to interacting magnetic-like and gravitational fields are quantified through the quantum fidelity and Shannon entropy in the scope of the phase-space representation of elementary quantum systems. For Gaussian Wigner functions describing harmonic oscillator states, an interacting external field destroys the quantum fidelity and introduces a quantum beating behavior. Likewise, it introduces harmonic profiles for free particle systems. Some aspects of quantum decoherence for the quantum harmonic oscillator and for the free particle limit are also quantified through the Shannon entropy. For the gravitational quantum well, the effect of a magnetic-like field on the quantum fidelity is suppressed by the linear term of the gravitational potential. To conclude, one identifies a fine formal connection of the quantum decoherence aspects discussed here with the noncommutative quantum mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.