Abstract

This paper develops an algorithm for the exact Gaussian estimation of a mixed-order continuous-time dynamic model, with unobservable stochastic trends, from a sample of mixed stock and flow data. Its application yields exact maximum likelihood estimates when the innovations are Brownian motion and either the model is closed or the exogenous variables are polynomials in time of degree not exceeding two, and it can be expected to yield very good estimates under much more general circumstances. The paper includes detailed formulae for the implementation of the algorithm, when the model comprises a mixture of first- and second-order differential equations and both the endogenous and exogenous variables are a mixture of stocks and flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.