Abstract
Flexible systems are linear systems of inclusions in which the elements of the coefficient matrix are external numbers in the sense of nonstandard analysis. External numbers represent real numbers with small, individual error terms. Using Gaussian elimination, a flexible system can be put into a row-echelon form with increasing error terms on the right-hand side. Then parameters are assigned to the error terms and the resulting system is solved by common methods of linear algebra. The solution set may have indeterminacy not only in terms of linear spaces, but also of modules. We determine maximal robustness for flexible systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.