Abstract

In order to investigate the Higgs mechanism nonperturbatively, we compute the Gaussian effective potential of the U(1) Higgs model (“scalar electrodynamics”). We show that the same simple result is obtained in three different formalisms. A general covariant gauge is used, with Landau gauge proving to be optimal. The renormalization generalizes the “autonomous” renormalization for λϕ4 theory and requires a particular relationship between the bare gauge coupling eB and the bare scalar self-coupling λB. When both couplings are small, then λ is proportional to e4 and the scalar/vector mass-squared ratio is of order e2, as in the classic 1-loop analysis of Coleman and Weinberg. However, as λ increases, e reaches a maximum value and then decreases, and in this “nonperturbative” regime the Higgs scalar can be much heavier than the vector boson. We compare our results to the autonomously renormalized 1-loop effective potential, finding close agreement in the physical predictions. The main phenomenological implication is a Higgs mass of about 2 TeV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.