Abstract

The random noise signal is widely used as a test signal to identify a physical or biological system. In particular, the Gaussian distributed white noise signal (Gaussian White Noise) is popularly used to simulate environmental noise in telecommunications system testing, input noise in testing ADC (Analog to Digital Converter) devices as well as testing other digital systems. Random noise signal generation can be done using resistors or diodes. The weakness of the noise generator system using physical components is the statistical distribution. An alternative solution is to use a Pseudo-Random System that can be adjusted for distribution and other statistical parameters. In this study, the implementation of the Gaussian distributed pseudo noise generation algorithm based on the Enhanced Box-Muller method is described. Prototype of noise generation system using a minimum system board based on Cortex Microcontroller or MCU-STM32F4. From the test results, it was found that the Enhanced Box-Muller (E Box-Muller) method can be applied to the MCU-STM32F4 efficiently, producing signal noise with Gaussian distribution. The resulting noise signal has an amplitude of ±1Volt, is Gaussian distributed and has a relatively wide frequency spectrum. The noise signal can be used as a jamming device in a certain frequency band using an Analog modulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.