Abstract
We present a quantifier of non-classical correlations for bipartite, multi-mode Gaussian states. It is derived from the Discriminating Strength measure, introduced for finite dimensional systems in A. Farace et al., New. J. Phys. 16, 073010 (2014). As the latter the new measure exploits the Quantum Chernoff Bound to gauge the susceptibility of the composite system with respect to local perturbations induced by unitary gates extracted from a suitable set of allowed transformations (the latter being identified by posing some general requirements). Closed expressions are provided for the case of two-mode Gaussian states obtained by squeezing or by linearly mixing via a beam-splitter a factorized two-mode thermal state. For these density matrices, we study how non-classical correlations are related with the entanglement present in the system and with its total photon number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.