Abstract

In this paper we establish lower and upper Gaussian bounds for the solutions to the heat and wave equations driven by an additive Gaussian noise, using the techniques of Malliavin calculus and recent density estimates obtained by Nourdin and Viens in [17]. In particular, we deal with the one-dimensional stochastic heat equation in [0, 1] driven by the space-time white noise, and the stochastic heat and wave equations in R d ( d ≥ 1 and d ≤ 3 , respectively) driven by a Gaussian noise which is white in time and has a general spatially homogeneous correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.