Abstract
Let P(D) be a nonnegative homogeneous elliptic operator of order 2m with real constant coefficients on Rn and V be a suitable real measurable function. In this paper, we are mainly devoted to establish the Gaussian upper bound for Schrödinger type semigroup e−tH generated by H=P(D)+V with Kato type perturbing potential V, which naturally generalizes the classical result for Schrödinger semigroup e−t(Δ+V) as V∈K2(Rn), the famous Kato potential class. Our proof significantly depends on the analyticity of the free semigroup e−tP(D) on L1(Rn). As a consequence of the Gaussian upper bound, the Lp-spectral independence of H is concluded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.