Abstract

In probabilistic mobile robotics, the development of measurement models plays a crucial role as it directly influences the efficiency and the robustness of the robot’s performance in a great variety of tasks including localization, tracking, and map building. In this paper, we present a novel probabilistic measurement model for range finders, called Gaussian beam processes, which treats the measurement modeling task as a nonparametric Bayesian regression problem and solves it using Gaussian processes. The major benefit of our approach is its ability to generalize over entire range scans directly. This way, we can learn the distributions of range measurements for whole regions of the robot’s configuration space from only few recorded or simulated range scans. Especially in approximative approaches to state estimation like particle filtering or histogram filtering, this leads to a better approximation of the true likelihood function. Experiments on real world and synthetic data show that Gaussian beam processes combine the advantages of two popular measurement models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.