Abstract
A generic method is introduced to visualize in a “Gaussian-like way,” and onto $\mathbb {R}^{2}$ , results of Gaussian or non-Gaussian–based clustering. The key point is to explicitly force a visualization based on a spherical Gaussian mixture to inherit from the within cluster overlap that is present in the initial clustering mixture. The result is a particularly user-friendly drawing of the clusters, providing any practitioner with an overview of the potentially complex clustering result. An entropic measure provides information about the quality of the drawn overlap compared with the true one in the initial space. The proposed method is illustrated on four real data sets of different types (categorical, mixed, functional, and network) and is implemented on the r package ClusVis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.