Abstract

In a chemostat, bacteria live in a growth container of constant volume in which liquid is injected continuously. Recently, Campillo and Fritsch introduced a mass-structured individual-based model to represent this dynamics and proved its convergence to a more classic partial differential equation. In this work, we are interested in the convergence of the fluctuation process. We consider this process in some Sobolev spaces and use central limit theorems on Hilbert space to prove its convergence in law to an infinite-dimensional Gaussian process. As a consequence, we obtain a two-dimensional Gaussian approximation of the Crump-Young model for which the long time behavior is relatively misunderstood. For this approximation, we derive the invariant distribution and the convergence to it. We also present numerical simulations illustrating our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.