Abstract

In this article, we establish a high-dimensional CLT for the sample mean of p-dimensional spatial data observed over irregularly spaced sampling sites in R d , allowing the dimension p to be much larger than the sample size n. We adopt a stochastic sampling scheme that can generate irregularly spaced sampling sites in a flexible manner and include both pure increasing domain and mixed increasing domain frameworks. To facilitate statistical inference, we develop the spatially dependent wild bootstrap (SDWB) and justify its asymptotic validity in high dimensions by deriving error bounds that hold almost surely conditionally on the stochastic sampling sites. Our dependence conditions on the underlying random field cover a wide class of random fields such as Gaussian random fields and continuous autoregressive moving average random fields. Through numerical simulations and a real data analysis, we demonstrate the usefulness of our bootstrap-based inference in several applications, including joint confidence interval construction for high-dimensional spatial data and change-point detection for spatio-temporal data. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.