Abstract

Generalized (distribution-valued) Ornstein-Uhlenbeck processes, which by definition are solutions of generalized Langevin equations, arise in many investigations on fluctuation limits of particle systems (eg. Bojdecki and Gorostiza [1], Dawson, Fleischmann and Gorostiza [5], Fernández [7], Gorostiza [8,9], Holley and Stroock [10], Itô [12], Kallianpur and Pérez-Abreu [16], Kallianpur and Wolpert [14], Kotelenez [17], Martin-Löf [19], Mitoma [22], Uchiyama [25]). The state space for such a process is the strong dual Φ′ of a nuclear space Φ. A generalized Langevin equation for a Φ′-valued process X ≡ {Xt} is a stochastic evolution equation of the formwhere {At} is a family of linear operators on Φ and Z ≡ {Zt} is a Φ'-valued semimartingale (in some sense) with independent increments. Equations of the type (1.1) where Z does not have independent increments also arise in applications (eg. [9,14,20]) but here we are interested precisely in the case when Z has independent increments (we restrict the term generalized Langevin equation to this case in accordance with the classical Langevin equation).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call