Abstract
We study the thermodynamic properties associated with the black hole horizon and cosmological horizon for the Gauss-Bonnet solution in de Sitter space. When the Gauss-Bonnet coefficient is positive, a locally stable small black hole appears in the case of spacetime dimension $d=5,$ the stable small black hole disappears, and the Gauss-Bonnet black hole is always unstable quantum mechanically when $d>~6.$ On the other hand, the cosmological horizon is found to be always locally stable independent of the spacetime dimension. But the solution is not globally preferred; instead, the pure de Sitter space is globally preferred. When the Gauss-Bonnet coefficient is negative, there is a constraint on the value of the coefficient, beyond which the gravity theory is not well defined. As a result, there is not only an upper bound on the size of black hole horizon radius at which the black hole horizon and cosmological horizon coincide with each other, but also a lower bound depending on the Gauss-Bonnet coefficient and spacetime dimension. Within the physical phase space, the black hole horizon is always thermodynamically unstable and the cosmological horizon is always stable; furthermore, as in the case of the positive coefficient, the pure de Sitter space is still globally preferred. This result is consistent with the argument that the pure de Sitter space corresponds to an UV fixed point of dual field theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.