Abstract
PANOC is an algorithm for nonconvex optimization that has recently gained popularity in real-time control applications due to its fast, global convergence. The present work proposes a variant of PANOC that makes use of Gauss–Newton directions to accelerate the method. Furthermore, we show that when applied to optimal control problems, the computation of this Gauss–Newton step can be cast as a linear quadratic regulator (LQR) problem, allowing for an efficient solution through the Riccati recursion. Finally, we demonstrate that the proposed algorithm is more than twice as fast as the traditional L–BFGS variant of PANOC when applied to an optimal control benchmark problem, and that the performance scales favorably with increasing horizon length.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.