Abstract

We investigate Non-Linear Plane-Wave solutions of the classical Minkowskian Yang-Mills (YM) equations of motion. By imposing a suitable ansatz which solves Gauss' law for the $SU(3)$ theory, we derive solutions which consist of Jacobi elliptic functions depending on an enumerable set of elliptic modulus values. The solutions represent periodic anharmonic plane waves which possess arbitrary non-zero mass and are exact extrema of the non-linear YM action. Among them, a unique harmonic plane wave with a non-trivial pattern in phase, spin and color is identified. Similar solutions are present in the $SU(4)$ case while are absent from the $SU(2)$ theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.