Abstract

This paper presents a new and efficient strategy of pseudorandom pattern generation (PRPG) for IC testing. It uses a general programmable LFSR (P-LFSR) to offer multiple-seed and multiple-polynomial PRPG. The deterministic pattern set generated by an ATPG tool or supplied by the designers is used to guide the generation of pseudorandom patterns. A novel application of the Gauss-elimination procedure is proposed to find the seeds as well as the polynomials. With an intelligent heuristic to further utilize the essential faults, this approach becomes very efficient, even for the random pattern resistant (RPR) circuits. Experiments are conducted on the ISCAS-85 benchmarks and the full scan version of the ISCAS-89 benchmarks. For all benchmark circuits, complete fault coverage is achieved with good balance on the hardware overhead and the test lengths as compared to other schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.