Abstract

Currently, development of density functional theory approximations and their benchmarking for accurately modeling different types of molecular interactions become a very active field of research. In this report, performance of the dispersion (D3) and nonlocal (NL) corrected density functionals has been compared with generalized energy-based fragmentation approach at the complete basis set limit for predicting the relative energies of 10 low-energy isomers of water nanoclusters (H2O)20 as an illustrative example of hydrogen bonded systems. Considering a variety of exchange-correlation density functionals in combination with D3 and NL corrections we find that the D3 based approximations outperform the functionals incorporating NL correction. It is also shown that the LC-ωPBE-D3 and rPW86PBE-NL functionals have the best trend from the viewpoint of the order of stabilities in water nanoclusters under study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call