Abstract

To employ Pre-trained Language Models (PLMs) as knowledge containers in niche domains it is important to gauge the knowledge of these PLMs about facts in these domains. It is also an important pre-requisite to know how much enrichment effort is required to make them better. As part of this work, we aim to gauge and enrich small PLMs for knowledge of world geography. Firstly, we develop a moderately sized dataset of masked sentences covering 24 different fact types about world geography to estimate knowledge of PLMs on these facts. We hypothesize that for this niche domain, smaller PLMs may not be well equipped. Secondly, we enrich PLMs with this knowledge through fine-tuning and check if the knowledge in the dataset is infused sufficiently. We further hypothesize that linguistic variability in the manual templates used to embed the knowledge in masked sentences does not affect the knowledge infusion. Finally, we demonstrate the application of PLMs to tourism blog search and Wikidata KB augmentation. In both applications, we aim at showing the effectiveness of using PLMs to achieve competitive performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.