Abstract
We present the gauge-invariant formalism of cosmological weak lensing, accounting for all the relativistic effects due to the scalar, vector, and tensor perturbations at the linear order. While the light propagation is fully described by the geodesic equation, the relation of the photon wavevector to the physical quantities requires the specification of the frames, where they are defined. By constructing the local tetrad bases at the observer and the source positions, we clarify the relation of the weak lensing observables such as the convergence, the shear, and the rotation to the physical size and shape defined in the source rest-frame and the observed angle and redshift measured in the observer rest-frame. Compared to the standard lensing formalism, additional relativistic effects contribute to all the lensing observables. We explicitly verify the gauge-invariance of the lensing observables and compare our results to previous work. In particular, we demonstrate that even in the presence of the vector and tensor perturbations, the physical rotation of the lensing observables vanishes at the linear order, while the tetrad basis rotates along the light propagation compared to a FRW coordinate. Though the latter is often used as a probe of primordial gravitational waves, the rotation of the tetrad basis is indeed not a physical observable. We further clarify its relation to the E-B decomposition in weak lensing. Our formalism provides a transparent and comprehensive perspective of cosmological weak lensing.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.