Abstract

We consider extra dimensional gauge theories on an interval. We first review the derivation of the consistent boundary conditions (BC's) from the action principle. These BC's include choices that give rise to the breaking of the gauge symmetries. The boundary conditions could be chosen to coincide with those commonly applied in orbifold theories, but there are many more possibilities. To investigate the nature of gauge symmetry breaking via BC's we calculate the elastic scattering amplitudes for longitudinal gauge bosons. We find that using a consistent set of BC's the terms in these amplitudes that explicitly grow with energy always cancel without having to introduce any additional scalar degree of freedom, but rather by the exchange of Kaluza-Klein (KK) gauge bosons. This suggests that perhaps the standard model Higgs boson could be completely eliminated in favor of some KK towers of gauge fields. We show that from the low-energy effective theory perspective this seems to be indeed possible. We display an extra dimensional toy model, where BC's introduce a symmetry breaking pattern and mass spectrum that resembles that in the standard model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.