Abstract
Gauge symmetry enhancing, at specific points of the compactification space, is a distinguished feature of string theory. In this work we discuss the breaking of such symmetries with tools provided by Double Field Theory (DFT). As a main guiding example we discuss the bosonic string compactified on a circle where, at the self-dual radio the generic U(1) × U(1) gauge symmetry becomes enhanced to SU(2) × SU(2). We show that the enhancing-breaking of the gauge symmetry can be understood through a dependence of gauge structure constants (fluxes in DFT) on moduli. This dependence, in DFT description, is encoded in the generalized tangent frame of the double space. The explicit T-duality invariant formulation provided by DFT proves to be a helpful ingredient. The link with string theory results is discussed and generalizations to generic tori compactifications are addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.