Abstract

We consider a spinor Bose-Einstein condensate of neutral atoms in a magnetic quadrupole field and investigate the gauge potential derived from the spatially-varying magnetic field. We discuss the critical condition for a singular, quantized vortex state being energetically favored in the spinor condensate and find that it is necessary under experimentally realistic conditions to use atoms with hyperfine spin F > 1 and/or a more spatially-varying magnetic field, e.g., hexapole or octopole fields. Finally, we show that a spinor condensate in a ring geometry is beneficial for observing the gauge potential effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call