Abstract
AbstractTensile properties are important basic characteristics of materials and influence their end‐use and performance. More importantly, in the case of leather due to end‐use applications such as shoe uppers, automotive and furniture upholstery, mechanical properties such as tenacity are of extreme importance. Therefore, fundamental studies on the tensile properties of leather are needed. In this study, an attempt has been made to examine the effect of gauge length (GL) on the tensile properties of shoe upper leather. Two different specimens in the form of rectangular and dumbbell shapes have been cut from parallel and perpendicular directions to the body axis of the leather and have been tested. Results showed that the maximum breaking load and the percentage extension at break decreased with the increase in GL. Rectangular specimens showed a 30% decrease in maximum breaking load and a 13% decrease in percentage extension at break, while dumbbell specimens showed reductions in the order of 28 and 6%, respectively, as the GL increased from 9.53 cm to 23.5 cm. Highly varying supramolecular architecture of the collagen matrix and the frictional slippage caused by the free ends present in the collagen fibrils, which induce a weak‐link effect similar to the one found in cotton fibers and yarns, are considered to be the probable reasons for this behavior. A limited scanning electron microscopic study has been undertaken to pictorially represent the breakage of leather at different GLs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1202–1209, 2006
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.