Abstract

We study the dynamics of gauge-invariant scalar perturbations in cosmological scenarios with a modified Friedmann equation, such as quantum gravity bouncing cosmologies. We work within a separate universe approximation which captures wavelengths larger than the cosmological horizon; this approximation has been successfully applied to loop quantum cosmology and group field theory. We consider two variables commonly used to characterise scalar perturbations: the curvature perturbation on uniform-density hypersurfaces ζ and the comoving curvature perturbation R. For standard cosmological models in general relativity as well as in loop quantum cosmology, these quantities are conserved and equal on super-horizon scales for adiabatic perturbations. Here we show that while these statements can be extended to a more general form of modified Friedmann equations similar to that of loop quantum cosmology, in other cases, such as the simplest group field theory bounce scenario, ζ is conserved across the bounce whereas R is not. We relate our results to approaches based on a second-order equation for a single perturbation variable, such as the Mukhanov–Sasaki equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call