Abstract
The problem of defining a gauge-invariant effective potential with a strict energetic interpretation is examined in the context of spontaneously broken gauge theories. It is shown that such a potential can be defined in terms of a composite gauge-invariant order parameter in physical gauges. This effective potential is computed through one-loop order in a model with scalars and fermions coupled to an Abelian gauge theory, which serves as a simple model of the situation in electroweak theory, where vacuum stability arguments based on the scalar effective potential have been used to place lower bounds on the Higgs boson mass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.