Abstract

The fermion propagator in an arbitrary covariant gauge can be obtained from the Landau gauge result via a Landau–Khalatnikov–Fradkin transformation. This transformation can be written in a practically useful form in both configuration and momentum space. It is therefore possible to anticipate effects of a gauge transformation on the propagator’s analytic properties. These facts enable one to establish that if a critical number of flavours for chiral symmetry restoration and deconfinement exists in noncompact QED3, then its value is independent of the gauge parameter. This is explicated using simple forms for the fermion–photon vertex and the photon vacuum polarisation. The illustration highlights pitfalls that must be avoided in order to arrive at valid conclusions. Landau gauge is seen to be the covariant gauge in which the propagator avoids modification by a non-dynamical gauge-dependent exponential factor, whose presence can obscure truly observable features of the theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.