Abstract

We examine the nonperturbative structure of the radiatively induced Chern-Simons term in a Lorentz- and CPT-violating modification of QED. Although the coefficient of the induced Chern-Simons term is in general undetermined, the nonperturbative theory appears to generate a definite value. However, the CPT-even radiative corrections in this same formulation of the theory generally break gauge invariance. We show that gauge invariance may yet be preserved through the use of a Pauli-Villars regulator, and, contrary to earlier expectations, this regulator does not necessarily give rise to a vanishing Chern-Simons term. Instead, two possible values of the Chern-Simons coefficient are allowed, one zero and one nonzero. This formulation of the theory therefore allows the coefficient to vanish naturally, in agreement with experimental observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call