Abstract

We derive the equation for the quasinormal modes corresponding to the scalar excitation of a black hole moving away in the fifth dimension. This geometry is the AdS/CFT dual of a boost-invariant expanding perfect fluid in N=4 SUSY Yang-Mills theory at large proper-time. On the gauge-theory side, the dominant solution of the equation describes the decay back to equilibrium of a scalar excitation of the perfect fluid. Its characteristic proper-time can be interpreted as a thermalization time of the perfect fluid, which is a universal (and numerically small) constant in units of the unique scale of the problem. This may provide a new insight on the short thermalization-time puzzle encountered in heavy-ion collision phenomenology. A nontrivial scaling behavior in proper-time is obtained which can be interpreted in terms of a slowly varying adiabatic approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.